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Drug classes:
• Nucleotide reverse transcriptase inhibitor (NRTI) 

• Non-nucleotide reverse transcriptase inhibitor (NNRTI) 

• Protease inhibitor (PI)

• integrase inhibitor (INSTI)

• Entry inhibitor (EI)

• Pharmacokinetic enhancer (Booster) 

A combination of ART drugs 
NRTI INSTINRTI

NRTI NNRTINRTI PI

Sequential Decision Making in HIV



Precision Medicine in HIV

time

• Sociodemographics

• Laboratory tests

• Behavioral characteristics

• Clinical factors


Assign ART regimen

Semi-annual visits 



Precision Medicine in HIV

Goal: determine the personalized ART regimen to 
optimize the long-term health

• Treatment-naive: 
• Pre-treated: 



Large-Scale HIV Studies
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• Semi-annual visits 



Challenges

• Estimate the effects of ART regimens from a high-dimensional and 
unbalanced space. 

- High-dimensional: with more than 30 ART drugs on the market, there are a 
large number of possible drug combinations.

- Unbalanced: some drug combinations are frequent whereas others are rare.

• Generate a realistic ART regimen from a large discrete space. 

- How to represent an ART regimen? 

• Optimize treatments from observational data (distribution shift).

NRTI NRTI PI

    D4T    +             LAM       +           NFV

993 times

(Drug 1, Drug 2, …, Drug N)A binary vector (2^N dimension)?

PI

    D4T    +      LAM       +      ATZ

12 times



Approach Overview

Environment

Diagnosis Survey Lab Test

Step I: Bayesian 
Dynamics Model

Learned Dynamics

Pessimistic Environment 
with Uncertainty 

Penalization

Step II: Offline 
Reinforcement 

Learning

Combination
Antiretroviral Therapy

Dataset

Policy Optimizer



Problem Formulation

Environment

Dataset

Diagnosis Survey Lab Test

Step I: Bayesian 
MGP Model

Learned Dynamics t

y

Step II: Offline 
Reinforcement 

Learning

Policy Optimizer

Combination
Antiretroviral Therapy

Pessimistic Environment 
with Uncertainty Penalization

Figure 1: Illustration of the proposed two-step Bayesian decision framework for optimizing
sequential cART assignments with proper uncertainty propagation.

policy optimization procedure. We evaluate the performance of the proposed approach

through simulation studies in Section 5 and apply it to the WIHS dataset in Section 6.

Lastly, we conclude with a discussion in Section 7.

2 Two-Step Bayesian Decision Framework Formulation

For each individual i = 1, 2, . . . , I, assume that we have an S-dimensional vector of baseline

covariates denoted by Xi0. At times ti = (ti1, . . . , ti,Ji), we have M time-varying variables

that characterize the individual’s health state such as depression score, denoted by Yi =

(Yi1, . . . ,Yi,Ji) with Yij 2 RM for each visit j = 1, 2, . . . , Ji. Let Zi = (Zi1, . . . , Zi,Ji) with

Zij denoting the cART regimen used by individual i during the time period (ti,j�1, tij], where

ti0 = 0. Thus our data can be summarized as D = {Di}Ii=1 = {Xi0, ti,Yi,Zi}Ii=1. Assume

that the physician assigns a regimen Zi,j+1 at time tij for the individual i to take during

the time period (tij, ti,j+1] based on her baseline covariates Xi0, longitudinal state history

Yij = {Yij0 : j0  j}, and treatment history Zij = {Zij0 : j0  j}. Then the individual takes

6

• Baseline covariates (e.g., race): Xi0.

• Visit times ti = (ti1, . . . , ti,Ji).

• M time-varying health state variables: Yi = (Yi1, . . . ,Yi,Ji) with Yij 2
RM .

• Zi = (Zi1, . . . , Zi,Ji) with Zij denoting the cART regimen used by indi-
vidual i during the time period (ti,j�1, tij ].

• State and treatment histories: Yij = {Yij0 : j0  j}, Zij = {Zij0 : j0  j}.

• Dynamic model: Yi,j+1 = f(Yij , Zi,j+1;�)

Goal: optimize ART assignments to maximize the individual’s 
long-term health outcomes



An Optimization Problem
• For any individual i, suppose that she already has Ji visits.

• Let Y new
i = {Yij : j > Ji} and Znew

i = {Zij : j > Ji} denote her future
longitudinal states and ART regimens.

• ART policy function: ⇡(Zi,j+1 | Yij , Zij ;✓).

• A stochastic reward function: ri(Y new
i ).

Denote the expected reward for any individual i to be:

Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)[ri(Y

new
i )]p(� | D)d�. (1)

find the optimal policy function ⇡(·, ·;✓?
i ) such that

✓?
i = argmax

✓
Ri(✓).

Goal:

✓?
i = argmax

✓
Ri(✓).

Uncertainty

• For any individual i, suppose that she already has Ji visits.

• Let Y new
i = {Yij : j > Ji} and Znew

i = {Zij : j > Ji} denote her future
longitudinal states and ART regimens.

• ART policy function: ⇡(Zi,j+1 | Yij , Zij ;✓).

• A stochastic reward function: ri(Y new
i ).

• For any individual i, suppose that she already has Ji visits.

• Let Y new
i = {Yij : j > Ji} and Znew

i = {Zij : j > Ji} denote her future
longitudinal states and ART regimens.

• ART policy function: ⇡(Zi,j+1 | Yij , Zij ;✓).

• A stochastic reward function: ri(Y new
i ).

• For any individual i, suppose that she already has Ji visits.

• Let Y new
i = {Yij : j > Ji} and Znew

i = {Zij : j > Ji} denote her future
longitudinal states and ART regimens.

• ART policy function: ⇡(Zi,j+1 | Yij , Zij ;✓).

• A stochastic reward function: ri(Y new
i ).



An Optimization Problem

Policy gradient via stochastic gradient descent (SGD)  

the prescribed regimen until the next visit at time ti,j+1, and her state is updated to Yi,j+1

following a probabilistic dynamic model parameterized by � : Yi,j+1 = f(Yij, Zi,j+1;�).

The objective is to optimize personalized sequential cART assignments to maximize the

individual’s long-term health outcomes, e.g., lowest cumulative depression scores in the next

two years. We first define our problem in an optimization framework.

For any individual i with baseline covariates Xi0, suppose that she already has Ji visits

with recorded states history Yi = (Yi1, . . . ,Yi,Ji) and treatment history Zi = (Zi1, . . . , Zi,Ji).

Note that Ji can be 0 if she has no prior visit. Let Y new
i = {Yij : j > Ji} and Z

new
i = {Zij :

j > Ji} denote her future longitudinal states and cART regimens, respectively. Assume for

any future visit j > Ji, the cART regimen is assigned through a policy function parameterized

by ✓ : ⇡(Zi,j+1 | Yij, Zij;✓). We assign to each individual some stochastic reward function

of future longitudinal states: ri(Y new
i ). For example, if our goal is to select sequential cART

regimens that result in the lowest cumulative depression scores (higher is worse) in the next

two years (i.e., the next 4 visits if 2 visits per year), and let Yij1 denote the predicted

depression score at the future visit j, j > Ji, we will define ri(Y new
i ) = �

PJi+4
j=Ji+1 Yij1.

Denote the expected reward for any individual i to be:

Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)[ri(Y

new
i )]p(� | D)d�. (2.1)

Note that even though the reward function ri(Y new
i ) only depends on Y

new
i , the expectation

in (2.1) is taken over all stochastic realizations of both Y
new
i and Z

new
i to highlight their

coupled relationship, which of course is equivalent to taking the expectation over Y new
i only

with respect to its marginal distribution p(Y new
i | D,�,✓). We aim to find the optimal

personalized cART assignment policy ⇡(·, ·;✓?
i ) that maximizes the expected reward Ri(✓),

✓
?
i = argmax✓ Ri(✓), while accounting for the uncertainty in the longitudinal dynamic model

by integrating out its parameter � with respect to the posterior distribution p(� | D).

To find ✓
?
i and the optimal sequential cART assignments from (2.1), we will use stochastic

gradient descent (SGD, Robbins and Monro 1951), i.e., ✓i,q+1 = ✓i,q + si,qr✓Ri(✓) |✓=✓i,q ,
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which requires computing the gradient of the expected reward: r✓Ri(✓). As the expectation

is taken over realizations of the joint distribution p(Y new
i ,Znew

i | D,�,✓), it is intractable to

directly compute r✓Ri(✓). Fortunately, we can indirectly compute this gradient by taking

the expectation of the reward-weighted gradient of log-policy:

r✓Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)

2

4ri(Y new
i )r✓ log

0

@
Y

j�Ji

⇡(Zi,j+1 | Yij , Zij ;✓)

1

A

3

5 p(� | D)d�,

(2.2)

where the policy ⇡(Zi,j+1 | Yij, Zij;✓) maps the individual’s up-to-date longitudinal states

and treatment history to a recommended regimen at each future visit j, j > Ji. We provide

the proof of equation (2.2) in Supplementary Material Section B.

The form of (2.2) allows us to use Monte Carlo to approximate r✓Ri(✓). Specifically,

we need to 1) sample future longitudinal states Y
new
i , which requires us to learn how the

individual’s states evolve over time conditional on her preceding states and treatment his-

tory from the data D; and 2) parameterize the cART assignment policy ⇡ so that we can

compute the gradient of log-policy r✓ log
⇣Q

j�Ji
⇡(Zi,j+1 | Yij, Zij;✓)

⌘
. To fulfill these two

objectives, we propose a two-step approach. In the first step (Section 3), we propose to

use a multivariate Gaussian process (MGP) to model the joint distribution of individual’s

longitudinal states. The transition dynamics Yi,j+1 = f(Yij,Zij;�) is then induced by the

conditional distribution of the MGP model, and can be subsequently used for sampling fu-

ture longitudinal states. The MGP is able to model multivariate longitudinal data observed

at irregular time points with uncertainty quantification, which will be incorporated into the

optimization. In the second step (Section 4), to mitigate the distribution shift issue aris-

ing from optimizing sequential cART assignments from observational data, we construct a

pessimistic environment as a surrogate for the underlying true environment, by equipping

the reward function with uncertainty penalization for safe exploration in the cART space.

We conduct policy optimization with respect to the following uncertainty-penalized reward:

eri(Y new
i ) = ri(Y new

i )� �u(Y new
i ,Znew

i ), where the function u(·, ·) quantifies the uncertainty

of the estimated dynamic model at future states Y
new
i with cART assignments Z

new
i , and

8

• Sample future states

• Parameterize the policy function
• Define a reward function

Denote the expected reward for any individual i to be:

Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)[ri(Y

new
i )]p(� | D)d�. (1)



Modeling Longitudinal States
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Multivariate Gaussian Process (MGP)



MGP

� � 0 is a hyperparameter that controls the degree of uncertainty penalization to the re-

ward function. To find the gradient of the log-policy, we develop a probabilistic generative

model for the cART assignment Zi,j+1 = ⇡(Yij, Zij;✓) by representing the decision process

of selecting cART regimens via a tree structure with three levels. The functional form of

the cART assignment ⇡ allows us to directly compute r✓ log
⇣Q

j�Ji
⇡(Zi,j+1 | Yij, Zij;✓)

⌘
,

which can be then used for estimating ✓
?
i from (2.1) though SGD.

3 First Step: Modeling Longitudinal States

3.1 Probability model

In this section, we describe the proposed MGP model for individuals’ longitudinal states.

MGPs are a popular choice for modeling irregularly spaced multivariate longitudinal data

with great flexibility and natural uncertainty quantification (Alvarez et al., 2011).

Let Yim(t) denote the m-th variable for individual i at time t. Note that Yim(t) can be

missing at any time t, and we assume they are missing at random. We construct a sampling

model for individuals’ longitudinal states Yim(t) = fim(t) + ✏im, where fim(t) is a smooth

function representing the mean of variable m for individual i at time t and ✏im
i.i.d⇠ N (0, �2

m).

We place independent GP priors over functions fim(t)’s with a shared time correlation kernel

Ct(t, t0) for ease of computation. Because we do not expect fim(t) to be overly smooth, we

consider the Ornstein-Uhlenbeck (OU) kernel Ct(t, t0) = ⇢|t�t0|
t whose realizations are only

first-order continuous. Given Ct(t, t0), (fi1(t), . . . , fiM(t)) are MGP-distributed with mean

(µi1(t), . . . , µiM(t)) and a separable covariance function cov(fim(t), fim0(t0)) = CM
mm0Ct(t, t0),

where CM is anM⇥M covariance matrix characterizing the dependence among the variables.

We model the GP mean µim(t) with a mixed-e↵ects model,

µim(t) = Xi0�m + V (t)↵im + hm(Zi(t)), (3.1)

where Zi(t) denotes the treatment history of individual i until time t, �m is the baseline fixed

e↵ects including an intercept, V (t) = (1, t), and ↵im ⇠ N (0,⌃↵m) represents the random

9

(fi1(t), . . . , fiM (t)) are MGP-distributed

• Mean (µi1(t), . . . , µiM (t)).

• Separable covariance function cov(fim(t), fim0(t0)) = CM
mm0Ct

(t, t0).

• CM
: M ⇥M covariance matrix.

• Ornstein-Uhlenbeck (OU) kernel Ct
(t, t0) = ⇢|t�t0|

t .



MGP

Baseline

µim(t) = Xi0�m + V (t)↵im + hm(Zi(t))

Random effects

� � 0 is a hyperparameter that controls the degree of uncertainty penalization to the re-

ward function. To find the gradient of the log-policy, we develop a probabilistic generative

model for the cART assignment Zi,j+1 = ⇡(Yij, Zij;✓) by representing the decision process

of selecting cART regimens via a tree structure with three levels. The functional form of

the cART assignment ⇡ allows us to directly compute r✓ log
⇣Q

j�Ji
⇡(Zi,j+1 | Yij, Zij;✓)

⌘
,

which can be then used for estimating ✓
?
i from (2.1) though SGD.

3 First Step: Modeling Longitudinal States

3.1 Probability model

In this section, we describe the proposed MGP model for individuals’ longitudinal states.

MGPs are a popular choice for modeling irregularly spaced multivariate longitudinal data

with great flexibility and natural uncertainty quantification (Alvarez et al., 2011).

Let Yim(t) denote the m-th variable for individual i at time t. Note that Yim(t) can be

missing at any time t, and we assume they are missing at random. We construct a sampling

model for individuals’ longitudinal states Yim(t) = fim(t) + ✏im, where fim(t) is a smooth

function representing the mean of variable m for individual i at time t and ✏im
i.i.d⇠ N (0, �2

m).

We place independent GP priors over functions fim(t)’s with a shared time correlation kernel

Ct(t, t0) for ease of computation. Because we do not expect fim(t) to be overly smooth, we

consider the Ornstein-Uhlenbeck (OU) kernel Ct(t, t0) = ⇢|t�t0|
t whose realizations are only

first-order continuous. Given Ct(t, t0), (fi1(t), . . . , fiM(t)) are MGP-distributed with mean

(µi1(t), . . . , µiM(t)) and a separable covariance function cov(fim(t), fim0(t0)) = CM
mm0Ct(t, t0),

where CM is anM⇥M covariance matrix characterizing the dependence among the variables.

We model the GP mean µim(t) with a mixed-e↵ects model,

µim(t) = Xi0�m + V (t)↵im + hm(Zi(t)), (3.1)

where Zi(t) denotes the treatment history of individual i until time t, �m is the baseline fixed

e↵ects including an intercept, V (t) = (1, t), and ↵im ⇠ N (0,⌃↵m) represents the random

9



MGP

e↵ects. The last term hm(Zi(t)) is the key component of the GP mean, which measures not

only the instantaneous e↵ect of the current cART regimen Zi(t) for variable m, but also the

accumulated e↵ects of preceding cART regimens,

hm(Zi(t)) =

PD
d=1 (Zi(t), zd)�mdPD

d=1 (Zi(t), zd)
+

SX

s=1

PD
d=1 (Zi(t), zd)Xi0se�mdsPD

d=1 (Zi(t), zd)| {z }
instantaneous drug e↵ect

+
NX

n=1

�mn

Z t

0
I(An 2 Zi(t

0))e�(t�t0)dt0

| {z }
accumulated drug e↵ect

,

(3.2)

where An represents the n-th individual ART drug recorded in the dataset, n = 1, 2, . . . , N .

In the WIHS dataset, N = 31. The instantaneous drug e↵ect includes the cART main e↵ects

and cART-covariate interaction e↵ects. Since the cART regimen space is high dimensional

due to the large number of possible drug combinations, we use the subset-tree (ST) kernel

approach (Jin et al., 2021) to reduce the dimension to a manageable size and encourage

similar e↵ects for similar cART regimens. Specifically, we first pick a number D of rep-

resentative cART regimens that are commonly prescribed in clinical practice, denoted by

z1, . . . , zD. Then we calculate the similarities between the regimen Zi(t) and those repre-

sentative regimens using a similarity score function (Zi(t), zd) induced by the ST kernel,

which will be described later. The accumulated drug e↵ect models the long-term e↵ect �nm

of each ART drug n that has been used by the individual i before time t on variable m,

denoted by an indicator function I(An 2 Zi(t0)), t < t0. This accumulated e↵ect decays with

time and will eventually decline to zero after an ART drug is terminated for a long time.

In practice, the instantaneous drug e↵ect is usually beneficial (e.g., viral suppression), while

the accumulated drug e↵ect can be toxic. For example, the long-term use of EFV (efavirenz)

is associated with worse neurocognitive functioning (Ma et al., 2016).

Here we give a brief description of the ST kernel. We first represent each cART regimen

as a rooted tree T with three levels: 1) the first level indicates which drug classes are used;

2) the second level indicates how many drugs are used within each drug class; 3) the third

level indicates which specific individual ART drugs are used within each drug class. Figure 2

illustrates the representation using two cART regimens as an example. The main idea of the

10
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Representative ART Regimen



ART Regimen Similarity

• Linear Kernel
- Computes the similarity between regimens based on the 

proportion of common drugs that two regimens share.

D4T (NRTI) + LAM (NRTI) + NFV (PI) 

D4T + LAM + ATZ (PI) 

D4T + LAM + EFV (NNRTI) 

FTC (NRTI) + TDF (NRTI) + RTV (PI) 

ART Regimen Similarity

Representative ART Regimen

e↵ects. The last term hm(Zi(t)) is the key component of the GP mean, which measures not

only the instantaneous e↵ect of the current cART regimen Zi(t) for variable m, but also the

accumulated e↵ects of preceding cART regimens,

hm(Zi(t)) =

PD
d=1 (Zi(t), zd)�mdPD

d=1 (Zi(t), zd)
+

SX

s=1

PD
d=1 (Zi(t), zd)Xi0se�mdsPD

d=1 (Zi(t), zd)| {z }
instantaneous drug e↵ect

+
NX

n=1

�mn

Z t

0
I(An 2 Zi(t

0))e�(t�t0)dt0

| {z }
accumulated drug e↵ect

,

(3.2)

where An represents the n-th individual ART drug recorded in the dataset, n = 1, 2, . . . , N .

In the WIHS dataset, N = 31. The instantaneous drug e↵ect includes the cART main e↵ects

and cART-covariate interaction e↵ects. Since the cART regimen space is high dimensional

due to the large number of possible drug combinations, we use the subset-tree (ST) kernel

approach (Jin et al., 2021) to reduce the dimension to a manageable size and encourage

similar e↵ects for similar cART regimens. Specifically, we first pick a number D of rep-

resentative cART regimens that are commonly prescribed in clinical practice, denoted by

z1, . . . , zD. Then we calculate the similarities between the regimen Zi(t) and those repre-

sentative regimens using a similarity score function (Zi(t), zd) induced by the ST kernel,

which will be described later. The accumulated drug e↵ect models the long-term e↵ect �nm

of each ART drug n that has been used by the individual i before time t on variable m,

denoted by an indicator function I(An 2 Zi(t0)), t < t0. This accumulated e↵ect decays with

time and will eventually decline to zero after an ART drug is terminated for a long time.

In practice, the instantaneous drug e↵ect is usually beneficial (e.g., viral suppression), while

the accumulated drug e↵ect can be toxic. For example, the long-term use of EFV (efavirenz)

is associated with worse neurocognitive functioning (Ma et al., 2016).

Here we give a brief description of the ST kernel. We first represent each cART regimen

as a rooted tree T with three levels: 1) the first level indicates which drug classes are used;

2) the second level indicates how many drugs are used within each drug class; 3) the third

level indicates which specific individual ART drugs are used within each drug class. Figure 2

illustrates the representation using two cART regimens as an example. The main idea of the
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ART Regimen Similarity
• Subset-tree (ST) Kernel
- Calculates the similarity between regimens 

across all levels of the tree representation.
ART Regimen Similarity

Representative ART Regimen

e↵ects. The last term hm(Zi(t)) is the key component of the GP mean, which measures not

only the instantaneous e↵ect of the current cART regimen Zi(t) for variable m, but also the

accumulated e↵ects of preceding cART regimens,

hm(Zi(t)) =

PD
d=1 (Zi(t), zd)�mdPD

d=1 (Zi(t), zd)
+

SX

s=1

PD
d=1 (Zi(t), zd)Xi0se�mdsPD
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instantaneous drug e↵ect

+
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n=1
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Z t

0
I(An 2 Zi(t

0))e�(t�t0)dt0

| {z }
accumulated drug e↵ect

,

(3.2)

where An represents the n-th individual ART drug recorded in the dataset, n = 1, 2, . . . , N .

In the WIHS dataset, N = 31. The instantaneous drug e↵ect includes the cART main e↵ects

and cART-covariate interaction e↵ects. Since the cART regimen space is high dimensional

due to the large number of possible drug combinations, we use the subset-tree (ST) kernel

approach (Jin et al., 2021) to reduce the dimension to a manageable size and encourage

similar e↵ects for similar cART regimens. Specifically, we first pick a number D of rep-

resentative cART regimens that are commonly prescribed in clinical practice, denoted by

z1, . . . , zD. Then we calculate the similarities between the regimen Zi(t) and those repre-

sentative regimens using a similarity score function (Zi(t), zd) induced by the ST kernel,

which will be described later. The accumulated drug e↵ect models the long-term e↵ect �nm

of each ART drug n that has been used by the individual i before time t on variable m,

denoted by an indicator function I(An 2 Zi(t0)), t < t0. This accumulated e↵ect decays with

time and will eventually decline to zero after an ART drug is terminated for a long time.

In practice, the instantaneous drug e↵ect is usually beneficial (e.g., viral suppression), while

the accumulated drug e↵ect can be toxic. For example, the long-term use of EFV (efavirenz)

is associated with worse neurocognitive functioning (Ma et al., 2016).

Here we give a brief description of the ST kernel. We first represent each cART regimen

as a rooted tree T with three levels: 1) the first level indicates which drug classes are used;

2) the second level indicates how many drugs are used within each drug class; 3) the third

level indicates which specific individual ART drugs are used within each drug class. Figure 2

illustrates the representation using two cART regimens as an example. The main idea of the
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Posterior Inference: 
•Assign priors to all unknown parameters 
•Obtain posterior distributions from MCMC 
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Reward
Define the reward function based on 

viral load, kidney function, and depression in the next two years
of depression, viral load, and estimated glomerular filtration rate (eGFR, a kidney function

indicator), respectively. We define a personalized reward function for the next two years

(i.e., the next 4 visits for 2 visits per year),

ri(Y
new
i ) = �

Ji+4X

j=Ji+1

8
><

>:
wi1Yij1| {z }
depression

+wi2|Yij2 � TV |I(Yij2 > TV )| {z }
viral load

+wi3|Yij3 � TE |I(Yij3 < TE)| {z }
eGFR

9
>=

>;
. (4.1)

Here TV and TE denote the known clinical thresholds for viral load and eGFR, i.e., if

Yij2 > TV , or Yij3 < TE, then individual i’s viral load or eGFR at visit j is in the ab-

normal range and immediate medical care is needed. If an individual’s viral load is in its

normal range (i.e., Yij2  TV ), it is not necessary to adjust the cART assignment to further

reduce the viral load; accordingly the proposed reward function does not warrant additional

rewards due to the term I(Yij2 > TV ). Same can be said for eGFR. In contrast, since lower

depression is always better, the proposed reward function always encourages lower depression

scores. The personalized weight wi = (wi1, wi2, wi3) determines the relative contribution of

depression, viral load, and eGFR to the reward, which should be chosen by practitioners.

For example, for an individual with a high level of viral load, the priority of the treatment

is viral suppression. Therefore, a large weight should be put on the viral load term in the

reward function to encourage the optimization procedure to find the cART regimen that

reduces her viral load the most.

Inspired by Yu et al. (2020b) who developed a model-based uncertainty-penalized pol-

icy optimization method to mitigate the distribution shift issue in o✏ine RL, we build

a pessimistic environment based on the uncertainty quantified from the learned proba-

bilistic dynamic model in the first step. Specifically, we define an uncertainty-penalized

reward eri(Y new
i ) that penalizes ri(Y new

i ) in (4.1) for each pair of state (i.e., individual’s

longitudinal states Y
new
i ) and action (i.e., cART assignments Z

new
i ) by its estimated un-

certainty in the learned dynamics: eri(Y new
i ) = ri(Y new

i ) � �u(Y new
i ,Znew

i ), where u(·, ·)

quantifies the uncertainty of the state-action pair (Y new
i ,Znew

i ). In this paper, we use

u(Y new
i ,Znew

i ) =
PJi+4

j=Ji+1

PM
m=1

p
Var(Yijm | Zij,D), where Yijm is the predicted value of
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Model-based uncertainty-penalized policy optimization (Yu et al. 2020) 

A pessimistic environment: 
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An Uncertainty-Penalized Reward
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Decision Process for Assigning ART

the m-th variable for individual i at future visit j, and the variance is calculated by its

posterior predictive distribution conditional on the cART assignment Zij and the observed

data D. Our formulation is motivated by the theoretical guarantee established in Yu et al.

(2020b) who showed that the learned policy from the pessimistic environment performed at

least as well as the behavior policy that generated the observational data.

4.2 Decision process for assigning cART

In order to find ✓
? that maximizes the expected reward Ri(✓) defined in (2.1) for individual

i via the policy optimization procedure, we need to compute the gradient of the expected

reward: r✓Ri(✓). For that, we model the policy ⇡ (i.e., the probabilistic generative model for

the cART assignment Zi,j+1 = ⇡(Yij, Zij;✓)) by representing the decision process of selecting

a cART regimen conditional on individuals’ preceding longitudinal states and treatment

histories via a tree structure with three levels, illustrated in Figure 3.

Regimen Switching?

Stay on 
previous regimen

Switch to a 
new regimen

Switch

NRTI

NRTI NRTI

NNRTI

NNRTI

FTC TDF EFV

Which drug classes 
and how many drugs?

Which individual drugs 
within each class?

Start

End

Level  I

Level II

Level III

Figure 3: Illustration of the three-level decision process for selecting a cART regimen condi-
tional on individuals’ preceding longitudinal states and treatment histories.

In the first level of the decision process, we determine whether individual i needs to switch

to a new cART regimen or stay on her previous regimen. In HIV clinical practice, physicians

15

class, the details of which are given below.

First-level decision. We model the first level decision by applying hard thresholding on de-

pression, viral load, and eGFR at known clinically abnormal thresholds,

p(a(1)ij = 1 | Yij , Zij ;✓
(1)) =

8
>><

>>:

1, if Yij1 > TD or Yij2 > TV or Yij3 < TE ,

0, otherwise,

(4.3)

where a(1)ij = 1 indicates regimen switching, and a(1)ij = 0 represents staying on the previous

regimen Zij until the next visit j + 1.

Second-level decision. Assume that there areK di↵erent drug classes, and that the maximum

number of drugs used in the k-th drug class is Ck, k = 1, 2, . . . , K. Conditional on the

regimen switching, we model the number of drugs used in each drug class for the new

regimen independently using the following multi-class logistic regression model,

p(a(2)
ij | a(1)ij = 1,Yij , Zij ;✓

(2)) =
KY

k=1

p(a(2)ijk | a(1)ij = 1,Yij , Zij ;✓
(2)
k ), (4.4)

where

p(a(2)ijk = ck | a(1)ij = 1,Yij , Zij ;✓
(2)
k ) =

8
>>>>><

>>>>>:

exp
⇣
Y T
ij ✓

(2)
kck

⌘

1+
PCk

c0
k
=1

exp

✓
Y T
ij ✓

(2)

kc0
k

◆ , ck = 1, 2, . . . , Ck,

1

1+
PCk

c0
k
=1

exp

✓
Y T
ij ✓

(2)

kc0
k

◆ , ck = 0.

(4.5)

Note that the second-level decision only depends on the individual’s most recent state Yij,

which can be easily extended to her entire history if necessary.

Third-level decision. Assume that there are a number of Nk possible individual ART drugs

for each drug class k. Note that
PK

k=1 Nk  N since some ART drugs are no longer available

due to their sub-optimal antiviral potency or unacceptable toxicities. Given ck drugs have

been selected for each drug class k in the second level, we select individual ART drugs using

the Wallenius’ noncentral hypergeometric distribution (WNH, Wallenius 1963),

p(a(3)
ij | a(1)ij ,a(2)

ij ,Yij , Zij ;✓
(3)) =

KY

k=1

p(a(3)
ijk | a(1)ij = 1, a(2)ijk = ck,Yij , Zij ;✓

(3)
k ) =

KY

k=1

Z 1

0

NkY

nk=1

(1�x⇠nk )a
(3)
ijknk dx,

(4.6)

where ⇠nk
= !nk

/{
PNk

n0
k=1 !n0

k
(1 � a(3)ijkn0

k
)} and !nk

= exp(Y T
ij ✓

(3)
knk

)/{
PNk

n0
k=1 exp(Y

T
ij ✓

(3)
kn0

k
)},
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An Optimization Problem

Policy gradient via stochastic gradient descent (SGD)  

the prescribed regimen until the next visit at time ti,j+1, and her state is updated to Yi,j+1

following a probabilistic dynamic model parameterized by � : Yi,j+1 = f(Yij, Zi,j+1;�).

The objective is to optimize personalized sequential cART assignments to maximize the

individual’s long-term health outcomes, e.g., lowest cumulative depression scores in the next

two years. We first define our problem in an optimization framework.

For any individual i with baseline covariates Xi0, suppose that she already has Ji visits

with recorded states history Yi = (Yi1, . . . ,Yi,Ji) and treatment history Zi = (Zi1, . . . , Zi,Ji).

Note that Ji can be 0 if she has no prior visit. Let Y new
i = {Yij : j > Ji} and Z

new
i = {Zij :

j > Ji} denote her future longitudinal states and cART regimens, respectively. Assume for

any future visit j > Ji, the cART regimen is assigned through a policy function parameterized

by ✓ : ⇡(Zi,j+1 | Yij, Zij;✓). We assign to each individual some stochastic reward function

of future longitudinal states: ri(Y new
i ). For example, if our goal is to select sequential cART

regimens that result in the lowest cumulative depression scores (higher is worse) in the next

two years (i.e., the next 4 visits if 2 visits per year), and let Yij1 denote the predicted

depression score at the future visit j, j > Ji, we will define ri(Y new
i ) = �

PJi+4
j=Ji+1 Yij1.

Denote the expected reward for any individual i to be:

Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)[ri(Y

new
i )]p(� | D)d�. (2.1)

Note that even though the reward function ri(Y new
i ) only depends on Y

new
i , the expectation

in (2.1) is taken over all stochastic realizations of both Y
new
i and Z

new
i to highlight their

coupled relationship, which of course is equivalent to taking the expectation over Y new
i only

with respect to its marginal distribution p(Y new
i | D,�,✓). We aim to find the optimal

personalized cART assignment policy ⇡(·, ·;✓?
i ) that maximizes the expected reward Ri(✓),

✓
?
i = argmax✓ Ri(✓), while accounting for the uncertainty in the longitudinal dynamic model

by integrating out its parameter � with respect to the posterior distribution p(� | D).

To find ✓
?
i and the optimal sequential cART assignments from (2.1), we will use stochastic

gradient descent (SGD, Robbins and Monro 1951), i.e., ✓i,q+1 = ✓i,q + si,qr✓Ri(✓) |✓=✓i,q ,

7

which requires computing the gradient of the expected reward: r✓Ri(✓). As the expectation

is taken over realizations of the joint distribution p(Y new
i ,Znew

i | D,�,✓), it is intractable to

directly compute r✓Ri(✓). Fortunately, we can indirectly compute this gradient by taking

the expectation of the reward-weighted gradient of log-policy:

r✓Ri(✓) =

Z
E(Y new

i ,Znew
i )⇠p(Y new

i ,Znew
i |D,�,✓)

2

4ri(Y new
i )r✓ log

0

@
Y

j�Ji

⇡(Zi,j+1 | Yij , Zij ;✓)

1

A

3

5 p(� | D)d�,

(2.2)

where the policy ⇡(Zi,j+1 | Yij, Zij;✓) maps the individual’s up-to-date longitudinal states

and treatment history to a recommended regimen at each future visit j, j > Ji. We provide

the proof of equation (2.2) in Supplementary Material Section B.

The form of (2.2) allows us to use Monte Carlo to approximate r✓Ri(✓). Specifically,

we need to 1) sample future longitudinal states Y
new
i , which requires us to learn how the

individual’s states evolve over time conditional on her preceding states and treatment his-

tory from the data D; and 2) parameterize the cART assignment policy ⇡ so that we can

compute the gradient of log-policy r✓ log
⇣Q

j�Ji
⇡(Zi,j+1 | Yij, Zij;✓)

⌘
. To fulfill these two

objectives, we propose a two-step approach. In the first step (Section 3), we propose to

use a multivariate Gaussian process (MGP) to model the joint distribution of individual’s

longitudinal states. The transition dynamics Yi,j+1 = f(Yij,Zij;�) is then induced by the

conditional distribution of the MGP model, and can be subsequently used for sampling fu-

ture longitudinal states. The MGP is able to model multivariate longitudinal data observed

at irregular time points with uncertainty quantification, which will be incorporated into the

optimization. In the second step (Section 4), to mitigate the distribution shift issue aris-

ing from optimizing sequential cART assignments from observational data, we construct a

pessimistic environment as a surrogate for the underlying true environment, by equipping

the reward function with uncertainty penalization for safe exploration in the cART space.

We conduct policy optimization with respect to the following uncertainty-penalized reward:

eri(Y new
i ) = ri(Y new

i )� �u(Y new
i ,Znew

i ), where the function u(·, ·) quantifies the uncertainty

of the estimated dynamic model at future states Y
new
i with cART assignments Z

new
i , and

8

• Sample future states

• Parameterize the policy function
• Define a reward function

• Sample future states

• Define a reward function

• Parameterize the policy function



WIHS Data Analysis
• I=339 women from the Washington DC site.

• M=4 state variables at each visit: depression, viral load, 
eGFR, and BMI.

• 8% missing rate.

• Baseline covariates: age, smoking status, substance use, 
employment status, hypertension, and diabetes.

• N=31 ART drugs, K=6 drug classes, D=105 representative 
ART regimens
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Precision Medicine: uncertainty-penalized policy  
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Precision Medicine: uncertainty-penalized policy  
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